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Thermodynamic Limit for a Spin Lattice
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An integrable spin lattice is a higher dimensional generalization of integrable spin
chains. In this paper we consider a special spin lattice related to quantum mechanical
interpretation of the three-dimensional lattice model in statistical mechanics (Zamolod-
chikov and Baxter). The integrability means the existence of a set of mutually commut-
ing operators expressed in the terms of local spin variables. The significant difference
between spin chain and spin lattice is that the commuting set for the latter is produced
by a transfer matrix with two equitable spectral parameters. There is a specific bilinear
functional equation for the eigenvalues of this transfer matrix.

The spin lattice is investigated in this paper in the limit when both sizes of the lattice
tend to infinity. The limiting form of bilinear equation is derived. It allows to analyze the
distributions of eigenvalues of the whole commuting set. The ground state distribution
is obtained explicitly. A structure of excited states is discussed.

KEY WORDS: Three-dimensional integrable spin systems, Zamolodchikov-Baxter
model.

1. INTRODUCTION

The integrability of Zamolodchikov-Baxter three-dimensional lattice model (1,2) is
based on the commutativity of transfer-matrices T (θ1, θ2, θ3),

[T (θ1, θ2, θ3), T (θ1, θ
′
2, θ

′
3)] = 0, (1)

where θ j are Zamolodchikov dihedral angles. We understand T as an operator in the
vertex formulation(3) of Zamolodchikov-Bazhanov-Baxter model (4) with two spin
states. Matrix T represents graphically a layer of three-dimensional R-matrices. (5)

Let the sizes of the layer be N × M , so that the transfer matrix is the quantum
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mechanical operator acting in the Hilbert space H = h⊗N M , where h = C
2 is the

two-dimensional state space for local spin variable, and dimH = 2N M .
Two parameters θ2 and θ3 are varied in Eq. (1), it reveals the three-dimensional

nature of the transfer matrix T . Relation (1) implies the existence of a discrete set
of commutative operators {tm,n(θ1)},

T (θ1, θ2, θ3) =
∑

m,n

tm,n(θ1)Gm,n(θ2, θ3), (2)

where Gm,n(θ2, θ3) are some numerical coefficients. The problem of diagonaliza-
tion of T (θ1, θ2, θ3) for any θ2, θ3 is equivalent to the problem of simultaneous
diagonalization of {tm,n(θ1)}. In what follows, we consider a specific complete set
of {tm,n} which can be defined with the help of auxiliary problems.

It is well known, the Zamolodchikov model and its generalization—
Bazhanov-Baxter model (4)—are related to the generalized chiral Potts model. (6)

The prescription for the derivation of the desired set {tm,n} may be formulated in the
quantum group terms. Let L(u) be a Lax operator for Uq (ĝl N ) corresponding to
the minimal cyclic representation in the quantum space and N -dimensional vector
representation in the auxiliary space. (6,7) Let further T(u) be the monodromy of
L(u) for the chain of the length M , T(u) = L1(u)L2(u) . . . L M (u). The complete
set of integrals of motion is generated by all quantum characters of T(u). The
following expression gives a scheme for the definition of our set {tm,n}:

“q-det”[φ(u)v − T(u)] =
N∑

n=0

M∑

m=0

(−)nm+n+mumvntm,n, (3)

where φ(u) is some diagonal matrix making the “q-characteristic polynomial”
self-consistent. Here N and M are exactly the sizes of the layer. Alternatively,
tn(u) = ∑M

m=0 umtm,n is the transfer-matrix for the length-M chain of Uq (ĝl N )
Lax operators corresponding to the minimal cyclic representation in the quantum
space and to mth fundamental representation (rank-m antisymmetric tensors) in
the auxiliary space. Note, one should consider the minimal cyclic representation
with q2 = 1 and only one independent parameter corresponding to the single θ1.
Arbitrary parameters of cyclic representation correspond to an inhomogeneous set
of {θ1}.

Another combinatorial scheme producing the same {tm,n} was proposed
in Refs. 8 and 9. The combinatorial formulation uses the natural algebra of ob-
servables of the quantum-mechanical system—the set of N M local Pauli matrices
associated with the local quantum spaces h = C

2 of the layer-to-layer transfer
matrix T (θ1, θ2, θ3). All tm,n are simple polynomials in the algebra of observables.
This scheme is invariant from the point of view of 2 + 1 dimensional integrability,
in particular its rank-size N ↔ M duality is evident. The detailed combinatorial
formulation will be given in the first section. Since this framework implies the
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local algebra of observables associated with the vertices of the layer-lattice, we
call it “spin lattice.” It is important to note, all tm,n are Hermitian, i.e. the model is
indeed a model of quantum mechanics.

The eigenvalues of the set {tm,n} may be found as a solution of a system of bi-
linear equations. In the language of auxiliary transfer matrices for the generalized
chiral Potts model, the system of bilinear equations is the complete set of fusion
relations for fundamental transfer matrices tn(u). The reader may find the investi-
gation and discussion of the fusion relations and Bethe Ansatz for Zamolodchikov
model for N = 3 in Refs. 4, 10 and 11. In the direct 3D scheme the whole system
of fusion relations is encoded into a single spectral equation. (8,12)

The problem is to find the simultaneous eigenvalues of all tm,n . One way to
solve this problem is the nested Bethe Ansatz equations for the fusion algebra.
The crucial point in the Bethe Ansatz theory is the limit when the Bethe roots
form a continuous distribution: length of the chain M → ∞, rank of the symmetry
group N − 1 stays finite. Even if one sends now N → ∞, the resulting theory
will correspond to the singular aspect ratio N

M → 0. The Bethe Ansatz approach
may give a correct answer only for a quantity independent on N/M .

Contrary to this, the spectral equation in the direct 3D scheme is initially
N ↔ M invariant. In this paper the spectral equation is evaluated in the limit

N , M → ∞ ,
N

M
→ ζ (4)

where ζ in the non-singular aspect ratio of the layer lattice. The main result of this
paper is the exact distribution f (m, n; θ1, ζ ) of the largest eigenvalues (the ground
state), tm,n = const

√
N MeN Mg(θ1)/2 f (m, n; θ1, ζ ) in the limit (4). The other result

is the limiting form of the spectral equation allowing one to describe (at least
qualitatively) the gap-less excitations above the ground state.

This paper is organized as follows. In Secs. 1–3, we formulate first the
framework of the spin lattice, recall its finite N × M—volume spectral equation
and make its leading term evaluation. Content of the first three sections is a
repetition of Refs. 8, 9, 12–14. Next, in the fourth section, we expose some
preliminary numerical results for the spectrum of tm,n and discuss the main idea for
the limiting (4) procedure. In the fifth section we re-write the spectral equations in
the thermodynamic limit N , M → ∞. In the sixth section the qualitative analysis
of the thermodynamical spectral equation is given, the distribution of the ground
state eigenvalues of tm,n is obtained, and the structure of excitations is discussed.

2. FORMULATION OF THE SPIN LATTICE SYSTEM

All the ways to produce the set {tm,n}, either via Lax operators for cyclic repre-
sentation of Uq=−1(ĝl N ) or via 3D linear problem, (8) finally may be reformulated
in the following combinatorial form.
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Consider a square lattice with the size N × M and periodical boundary
conditions in both directions—exactly the layer of (1). Each vertex j of the lattice
may be labelled by the pair of the indices j = (ν, µ), ν ∈ ZN , µ ∈ ZM . A local
triplet of the Pauli matrices σ x

j , σ
y
j and σ z

j = i σ x
j σ

y
j is assigned to each vertex.

Consider a set of non-self-intersecting paths on the periodic lattice with the
following rules of bypassing a vertex and following factors γ j associated with
each variant of bypassing (note the multiplier κ in the third variant):

ν

µ
�

�
��
�

��

γ j = σ
y
ν,µ

ν

µ
�

�
��

�
��

γ j = κσ z
ν,µ

ν

µ
�

�
���

��

γ j = σ x
ν,µ

An example of such path for 4 × 4 lattice is drawn below:

Any path P on the torus has a homotopy class c(P) = mA + nB, where A is the
cycle from left to right and B is the cycle from bottom to top. In the other words,
m is the horizontal winding number and n is the vertical winding number of the
path P . The path in the example above has n = m = 1.

For fixed winding numbers n and m let

Jm,n(κ) =
∑

P : c(P)=mA+nB

∏

along P

γ j (5)

be the sum of the products
∏

alongP γ j of γ -factors along a path P for all possible
paths with the given winding numbers. The empty path gives J0,0 = 1. The winding
numbers of Jm,n take the values m = 0, 1, 2, . . . , M and n = 0, 1, 2, . . . , N .
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It is known, (8,9) operators Jm,n(κ) obey the following exchange relations:

Jm,n(κ)Jm ′,n′ (κ) = (−)nm ′+n′m Jm ′,n′ (κ)Jm,n(κ). (6)

These relations mean that all Jm,n may be quasi-diagonalized simultaneously:
there exists a basis |ψt , j〉 in the Hilbert space such that

Jm,n |ψt , j〉 =
∑

k=1,2

|ψt , k〉[(σ x )m(σ y)n]k j inm tm,n, (7)

where σ x and σ y are 2 × 2 standard Pauli matrices. In the basis-independent form,

Jm,n(κ) = inm (σ x )m(σ y)ntm,n(κ),

[σ x , tm,n] = [σ y, tm,n] = [tm,n, tm ′,n′ ] = 0,

σ xσ y = −σ yσ x , (σ x )2 = (σ y)2 = 1. (8)

The Ansatz (8) “solves” the exchange relations (6). Operators σ x and σ y may
be expressed in the terms of the algebra of observables. Without loss of generality
we may choose

σ x =
∏

ν

σ x
ν,1 and σ y =

∏

µ

σ
y

1,µ. (9)

The possibility of such choice follows from a detailed inspection of Jm,0 and
J0,n .

In the generalized chiral Potts model scheme, σ x is related to the global
U (1)-charge of (Uq (ĝl N ))⊗M , and σ y comes from a dynamical Yang-Baxter
equation.

The set of Jm,n (and {tm,n} as well) is the set of “integrals of motion” for
Zamolodchikov model (1) in its vertex formulation. (3) Namely, (8,9,13) the layer-to-
layer transfer matrix of Zamolodchikov model T (θ1, θ2, θ3) commutes with all
Jm,n(κ) for κ ≡ tan θ1

2 and arbitrary θ2, θ3. In this paper we prefer to call the
commuting operators tm,n the moduli since in the classical limit they become the
moduli of the classical spectral curve. (15)

The advantage of the present quantum-mechanical formulation is that if
κ is real, all Jm,n and tm,n are self-adjoint operators since the Pauli matrices
are self-adjoint, therefore the model is evidently physical. An eigenstate of the
model is defined by eigenvalues of all tm,n—one can label the eigenstates by the
corresponding values of {tm,n}. Our aim is to describe all eigenstates.

3. FINITE SIZE SPECTRAL EQUATIONS

In this section we recall the functional equation for the set of tm,n . For its
rigorous derivation see. Ref. 12.
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Consider the following generating function:

J (x, y) =
M∑

m=0

N∑

n=0

(−)n+m+nm xm yn Jm,n (10)

(confer Eq. (3)), where x and y are arbitrary parameters. In the basis of the
auxiliary σ -matrices (8) J (x, y) is

J (x, y) = t0,0(x, y) − σ x t1,0 (x, y) − σ yt0,1(x, y) − σ z t1,1(x, y) (11)

where

t0,0 (x, y) =
∑

m,n

x2m y2nt2m,2n,

t1,0 (x, y) =
∑

m,n

(−)n x2m+1 y2nt2m+1,2n,

t0,1(x, y) =
∑

m,n

(−)n x2m y2n+1t2m,2n+1,

t1,1(x, y) =
∑

m,n

(−)m+n x2m+1 y2n+1t2m+1,2n+1. (12)

It is known, (9,12,13) the complete Abelian algebra of tm,n is generated by the
polynomial decomposition of

t0,0(x, y)2 − t1,0(x, y)2 − t0,1(x, y)2 − t1,1(x, y)2 = F(x2, y2), (13)

where

F(λN , µN ) =
∏N−1

n=0

∏M−1
m=0 (1 − λe2π in/N − µe2π im/M − κ2λµe2π i(n/N+m/M)),

(14)

is a polynomial of x2 = λN and y2 = µN :

F(x2, y2) =
M∑

P=0

N∑

Q=0

x2P y2Q FP,Q . (15)

As it was mentioned in the introduction, Eq. (13) encodes the whole fusion
algebra of auxiliary transfer matrices for Uq=−1(ĝl N ), the reader may find some
explanation for N = 3 in the Appendix.

The right hand side of (13) may be re-written as
∑

P,Q

x2P y2Q
∑

m,n

(−)m+n+mn+m Q+n P tm,nt2P−m,2Q−n . (16)
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Equation (13) is the principal solution of the model, in the same way as the Bethe
Ansatz is the principal solution for the spin chains: the problem of diagonalization
of 2N M × 2N M matrices tm,n is reduced to a system of (N + 1) (M + 1) algebraic
equations.

∑ ∑

m,n

(−)m+n+mn+m Q+n P tm,nt2P−m,2Q−n = FP,Q . (17)

4. THE LEADING TERM

Suppose, there are no zero terms in the product (14). Then F in (13) is
exponentially big, and one may definitely conclude, (14)

Each of (tα,β(x, y))2
α,β=0,1 ∼ |F(x2, y2)| ∼ eN Mg(λ,µ;κ2), (18)

where x = λN/2, y = µM/2, and the integral

g(λ,µ; κ2) = lim
N ,M→∞

1

N M
log |F(X, Y )|

= 1

(2π )2

∫ ∫ 2π

0
dφdφ′ log |1 − λeiφ − µeiφ′ − κ2λµei(φ+φ′)|, (19)

being parameterized by

|λ| = sin r2

sin r1
, |µ| = sin r3

sin r1
, κ2 = sin r0 sin r1

sin r2 sin r3
, (20)

with r j bounded by

r0 + r1 + r2 + r3 = π and 0 ≤ r1 + r2, r1 + r3, r2 + r3 < π, (21)

has the value(14)

g(λ,µ; κ2) = − log 2 sin r1 +
3∑

j=0

(r j

π
log 2 sin r j + (r j )

)
, (22)

where (r ) is the polylogarithm(2):

(r ) =
∞∑

m=1

sin(2mr )

2πm2
. (23)

This value is closely related to Baxter’s result for the bulk free energy of the
Zamolodchikov model. (2,13,14)

Relation (18) gives the common bulk term for tα,β(x, y) on all eigenstates.
Note, (22) corresponds to the asymptotically infinite values of the spectral pa-
rameters x = λN/2 and y = µM/2. The answer (22) is useless from the quantum
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mechanical point of view since the bulk term does not take into account the
structure of tm,n . We need the finite size corrections.

5. NUMERICAL EVALUATION FOR FINITE N, M

We started the investigation of (17) with the numerical tests for relatively
small N , M (up to N = M = 8) and for simple choices of κ .

The principal observation for finite N , M is the following. Excluding tm,n

from (17) step-by-step, one comes to a final polynomial equation for a single tm,n:
such polynomial equation is exactly the characteristic equation for the operator
tm,n . Therefore, the system (17) and the problem of direct diagonalization of
operators tm,n are equivalent. In other words, any solution of Eq. (17) is indeed an
eigenstate. For this reason we call (17) the complete Abelian algebra.

Note in addition the parity property: if a set {tm,n} solves the Eq. (17), then
the set {t̃m,n},

t̃2m+α,2n+β = εα,β t2m+α,2n+β, (24)

where α, β = 0, 1 and εα,β are four arbitrary signs, solves (17) as well. This
ambiguity corresponds to the ambiguity of definition of the auxiliary σ x , σ y, σ z .

It is useful to visualize the domain of the indices of {tm,n} as the set � of
points (m, n) on the “momentum” plane:

� = {(m, n)}0 ≤ n ≤ N , 0 ≤ m ≤ M. (25)

The domain of FP,Q is the same, it is the Newton polygon for F(x2, y2). On
the boundary of the rectangular � the eigenvalues of tm,n as well as the values of
FP,Q are simple. Just putting e.g. y = 0 in (11), one gets

t0,0 (x, 0)2 − t1,0 (x, 0)2 = (1 − x2)M . (26)

This equation defines all possible boundary eigenvalues tm,0. Subject of in-
terest is the calculation of tm,n in the middle of �.

Numerical calculations show that for all eigenstates the absolute values of
tm,n as well as the coefficients Fm,n grow significantly when (m, n) goes from the
boundary of � to its middle. One eigenstate (up to the parity equivalence (24))
is strictly separated from all others: absolute value of any its tm,n is the maximal
with respect to values of the same tm,n for all other eigenstates. We will call it the
ground state.

For a given eigenstate, especially for the ground state, the values of tm,n are
maximal in some point (m, n) = (P0, Q0) in the middle of rectangular �. In the
same point the coefficient FP0,Q0 has the maximal absolute value with respect to all
other FP,Q . The observed feature of the ground state is that the value of

tP0+m,Q0+n

tP0 ,Q0
,

where |m|  M and |n|  N , depends essentially only on N/M and κ . The same
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asymptotical independence of N , M is valid for
FP0+m,Q0+n

FP0 ,Q0
as well. Expression (19)

is the result of a competition between the domain of maximal values of FP,Q and
big (or small) values of λM PµN Q accompanying FP,Q , see Eq. (15).

Another feature of {tm,n} may be mentioned. We observed that the sets of signs
of {tm,n} for (m, n) surrounding (P0, Q0) are different (up to (24)) for different
eigenstates.

These observations allow us to suggest an idea for evaluation of (17).
Since both {tm,n} and {FP,Q} have a domain of dominance—the neighborhood
of (P0, Q0) in the middle of �—we can stand to the point (P0, Q0) and con-
centrate on its neighborhood. The boundary of � is far from (P0, Q0), and
in the limit N , M → ∞ the boundary goes to infinity, so that the domain of
the dominance becomes the open Z

2. For finite N , M , in the neighborhood of
(P0, Q0)

|tP0+m,Q0+n|2 ∼ |FP0+m,Q0+n| ∼ eN Mg(1,1;κ2), |m|  M , |n|  N , (27)

so that the bulk exponent is just the common factor for all eigenstates. Cancelling
it, one does can evaluate the spectral Eq. (17) in the domain of dominance in the
limit (4). This will be done in the next section.

6. SPECTRAL EQUATION IN THE THERMODYNAMIC LIMIT

To rewrite Eqs. (13) or (17) in the thermodynamic limit N , M → ∞ with
N
M → ζ , we need to introduce several notations.

Define parameters c and a via

c = cot
a

2
=

√
1 + κ2

3 − κ2
⇐⇒ κ2 = sin 3a

2

sin a
2

. (28)

At N , M → ∞ the middle point (P0, Q0) is defined by

M
(

1 − a

π

)
= P0 − u1 , N

(
1 − a

π

)
= Q0 − u2 (29)

where P0 and Q0 are even integers while u1 and u2, −1 < u1, u2 ≤ 1, are
fractional parts. If a is not a rational fraction of π , both u1 and u2 are extra
variables.

Define next the quadratic form parameterized in the terms of c and aspect
ratio ζ :

�(p, q) = π

2

(
ζ

1 + c2

2c
p2 + 1 − c2

c
pq + ζ−1 1 + c2

2c
q2

)
. (30)
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The N , M → ∞ limit of (17) is based on the following asymptotic of the
coefficients FP,Q :

FP0+p,Q0+q = (−)p+q+pq eN Mg0(κ2) · e−�(p+u1,q+u2) · f0

×
(

1 + f1 + f2�(p + u1, q + u2)

N M
+ · · ·

)
, (31)

where

g0(κ2) ≡ g(1, 1; κ2) =
(

1 − 3a

2π

)
log κ2 + 3

(a

2

)
− 

(
3a

2

)
. (32)

Coefficients f0, f1, f2 are some functions of κ2, ζ , u1 and u2 (a sketch
derivation of (31) and the value of f0 is given in the Appendix).

Define τm,n as the fine structure of tm,n ,

τm,n = tP0+m,Q0+n√
f0 e

1
2 N Mg0(κ2)

. (33)

Here, according to the idea of the previous section, we have moved to the
middle point (P0, Q0) of the domain � and canceled common bulk factor. Sub-
stituting (31) and (33) into (17), cancelling the exponents and taking the limit
N , M → ∞, we come to the following equations for τm,n ,

∑ ∑

m,n∈Z

(−)m+n+mnτp+m,q+nτp−m,q−n = e−�(p+u1,q+u2). (34)

The next substitution

τm,n = cm,n e− 1
2 �(m+u1,n+u2) (35)

transforms (34) into the free from u1, u2 form:
∑ ∑

m,n∈Z

(−)m+n+mne−�(n,m)cp−m,q−ncp+m,q+n = 1

∀ p, q ∈ Z.

(36)

Equations (34) and (36) are two forms of (13) in the thermodynamical limit.

7. ANALYSIS OF (36)

For the analysis of (36), let us modify it slightly at the first:
∑ ∑

m,n∈Z

(−)m+n+mne−β�(n,m)cp−m,q−ncp+m,q+n = 1

∀ p, q ∈ Z,

(37)
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where the cut-off parameter β ≥ 1.
Consider for a moment ζ = 1. In this case

�(m, n) = π

4
(c−1 (m + n)2 + c(m − n)2), (38)

and we have two small parameters in Eq. (37),

Q = e−βπ/4c and Q̃ = e−βπc/4. (39)

Equation (37) may be analyzed in the terms of the perturbative expansion
with respect to Q, Q̃. The zero order reads

c2
p,q + o(1) = 1 ⇒ cp,q = εp,q (1 + o(1)), (40)

where εp,q = (±) is the sign of cp,q . In the first non-trivial order,

cp,q = εp,q (1 + (εp+1,qεp−1,q + εp,q−1εp,q+1)Q Q̃ + · · ·). (41)

This procedure may be continued, the result is a series with respect to Q and Q̃,

cp,q = εp,q

(
1 +

∑

m,n>0

χ (m,n)
p,q Qm Q̃n

)
, (42)

where coefficients χ
(m,n)
p,q are sums of products of εm,n for (m, n) surrounding

(p, q): The first few nonzero χ
(m,n)
p,q with m + n ≤ 4 are

χ (1,1)
p,q = εp+1,qεp−1,q + εp,q−1εp,q+1, (43)

χ (2,2)
p,q = εp,q+1εp,q−1εp+1,q−1εp−1,q−1

+ εp+1,qεp−1,qεp−1,q+1εp−1,q−1 + εp,q+1εp,q−1εp+1,q+1εp−1,q+1

+ εp+1,qεp−1,qεp,qεp−2,q + εp,q+1εp,q−1εp,q+2εp,q − 1

+ εp,q+1εp,q−1εp,qεp,q−2 − εp+1,qεp−1,qεp,q+1εp,q−1

+ εp+1,qεp−1,qεp+2,qεp,q + εp+1,qεp−1,qεp+1,q+1εp+1,q−1, (44)

and

χ (4,0)
p,q = εp−1,q−1εp+1,q+1 , χ (0,4)

p,q = εp−1,q+1εp+1,q−1. (45)

This procedure may be formulated for �(m, n) with arbitrary ζ as well.

Conjecture 1. If β > 1, all seria (42) converge. Solution of (37) is defined
uniquely by the distribution of the signs ε ≡ {εm,n}.

Note, due to the parity structure of (37), any distribution {εm,n} is equivalent
to {ε′

m,n = εm,n(±)m(±)n}, see Eq. (24).
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The homogeneous distribution εm,n = (+) is the distinguished one since in
this case cm,n are the same for all m, n: cm,n = c0. Expression for c0 follows from
(37) and matches the series form (42),

c0 =
( ∑

m,n

(−)m+n+mne−β�(m,n)

)−1/2

. (46)

When β → 1, the value of (46) diverges as

c0 ≈ 1√
(β − 1)χ

(47)

for some χ = χ (c, ζ ). This divergence may be explained by the 1
N M term in (31):

β = 1 + f2

N M when N , M → ∞, so that asymptotically

c0 =
√

N M

f2χ
∼

√
N M . (48)

The distribution εm,n = (+) and cm,n = c0 ∼ √
N M is the ground state ac-

cording to the numerical tests.
If the signs εm,n vary for different m, n (even if only one sign is opposite to

all the others), we have

Conjecture 2. The seria (42) with inhomogeneous ε converge at β = 1.

We can explain c0 ∼ √
N M in a bit different way. Consider for instance the

following distribution of the signs:

εp+m,q+n =

⎧
⎪⎪⎨

⎪⎪⎩

(+) if �(m, n) ≤ π

2
V ,

randomly (±) if �(m, n) >
π

2
V

(49)

In this case a very rough estimation gives

cp,q ∼
√

V . (50)

Thus the finite-volume domain of positive signs on the infinite lattice is
effectively equivalent to finite lattice, and the belt �(m, n) ∼ π

2 V plays the rôle
of an effective boundary.

The homogeneous distribution εm,n = (+) in a big volume V gives evidently
the maximal eigenvalues of the quantum mechanical model, any variation of the
signs gives an excitation of the spectrum. A distribution of the signs εm1,n1 =
εm2,n2 = . . . εmk ,nk = (−) with (m1, n1) . . . (mk, nk) inside V and with all other
εm,n = (+) inside V , is a candidate for a k-particles state.
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One particle state, εm1,n1 = (−) with all other εm,n = (+) inside V , is de-
scribed asymptotically by two continuous parameters (µ, ν) = ( m1√

V
, n1√

V
). We ex-

pect a “dispersion relation” in the form τm,n√
V

= a smooth function of (µ, ν). The
model evidently is gap-less.

The behavior (50) allows one to suggest a candidate for the Hamiltonian of
the system:

H = −
∑

m,n

τ 2
m,n ≡ −

∑

m,n

c2
m,ne−�(m,n). (51)

At the ground state H ≈ −h0V , i.e. one can talk about the density energy
−h0 of the ground state, and the spectrum of H describes bound states −h0 ≤
H
V < 0.

From the alternative point of view, one may consider the Hamiltonian

H ′ = −H. (52)

For this Hamiltonian, the ground state corresponds to a random distribution
of the signs—we can say nothing about it. Excitations are the islands of constant
signs in the sea of random ones, and its maximal value is described by the finite
energy density +h0.

8. DISCUSSION

The main results of this paper are the following. Distribution of the eigen-
values of tp,q near the middle point (P0, Q0) (29) of the domain � (25) is given
by

tP0+p,Q0+q√
f0e

1
2 N Mg0(κ2)

=
N ,M→∞

e− 1
2 �(p+u1,q+u2) cp,q , (53)

notations from Sec. 5. The set of cp,q is the solution of

∑

m,n

(−)m+n+mne−�(n,m)cp−m,q−ncp+m,q+n = 1 ∀ p, q ∈ Z. (54)

Any solution of (54) is uniquely defined by the set of signs, εp,q =
sign of cp,q . The ground state distribution corresponding to the homogeneous
signs εp,q = (+) is given by

tP0+p,Q0+q√
f0e

1
2 N Mg0(κ2)

=
N ,M→∞

const
√

N M e− 1
2 �(p+u1,q+u2). (55)
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The quadratic form �(p, q) (30) depends on the aspect ratio ζ = N/M ,
therefore our results are beyond the nested Bethe Ansatz approach.

A number of unsolved problems must be mentioned. Analytical expression for
the coefficient f2 in (31) and related common scale of the ground state distribution
are not known. Analytical answer for one-particle distribution of cp,q is not known
either. It is also unclear, how a position of single opposite sign of one-particle
distribution is related to the momenta of such eigenstate. The list of unsolved
problems may be continued.

APPENDIX A. sl3 FUSION ALGEBRA

Let us demonstrate how the Eqs (13,14) generate the fusion algebra of auxil-
iary transfer matrices. Choose the particular value N = 3. The series (11) may be
rewritten as the four-term sum

J (x, y) =
N∑

n=0

M∑

m=0

(−i)mn(−xσ x )m(−yσ y)ntm,n

=
(

M∑

m=0

(−xσ x )mtm,0

)
−

(
M∑

m=0

(ixσ x )mtm,1

)
yσ y

+
(

M∑

m=0

(xσ x )mtm,2

)
y2 −

(
M∑

m=0

(−ixσ x )mtm,3

)
y3σ y

≡ t0(xσ x ) − t1(xσ x ) yσ y + t2(xσ x ) y2 − t3(xσ x ) y3σ y . (56)

One may show combinatorially, (9) tk(x) is the Uq=−1(ŝl N ) transfer matrix for
the Lax operators with the cyclic representation in the quantum space and the
fundamental representation πk in the auxiliary space. It is supposed, π0 and πN

are the scalar representations, π1 is the vector representation etc. In N = 3 case
π2 is the co-vector representation.

Decomposition of F(x2, y2) with respect to y2 is following (ω = e2π i/3 and
λ3 = x2):

F(x2, y2) =
2∏

n=0

(
(1 − λωn)M − y2(1 + κ2λωn)M

)

= A(x2) − B(x2)y2 + C(x2)y4 − D(x2)y6, (57)
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where

A(x2) = (1 − x2)M , D(x2) = (1 + κ6x2)M ,

B(x2) = A(x2)

((
1 + κ2λ

1 − λ

)M

+
(

1 + κ2λω

1 − λω

)M

+
(

1 + κ2λω2

1 − λω2

)M
)

,

C(x2) = D(x2)

((
1 − λ

1 + κ2λ

)M

+
(

1 − λω

1 + κ2λω

)M

+
(

1 − λω2

1 + κ2λω2

)M
)

. (58)

Equating now (13) in all orders of y2, one comes at y0 and y6 to

t0(x) t0(−x) = (1 − x2)M , t3(x)t3 (−x) = (1 + κ6x2)M . (59)

For the generalized chiral Potts model the choice of U (1) charges is prescribed:

t0(x) = (1 − x)M , t3(x) = (1 + iκ3x). (60)

The orders y2 and y4 give

t1(x)t1(−x) = t0(−x)t2(x) + t0(x)t2(−x) + B(x2),

t2(x)t2(−x) = t3(−x)t1(x) + t3(x)t1(−x) + C(x2).
(61)

Relations (61) with (60) are exactly the fusion algebra for sl3. (4,10,11)

APPENDIX B. ASYMPTOTIC OF FP, Q

Let us discuss briefly the derivation of (31). Taking into account (22), one
may use the saddle point method for the estimation of FP,Q . Basically,

FP,Q = 1

(2π i)2

∮ ∮
d X

X

dY

Y

F(X, Y )

X P Y Q
. (62)

Let

αp = Pπ

M
, αq = Qπ

N
. (63)

Then

log

(
F(X, Y )

X P Y Q

)
∼ N M

(
g(λ,µ; κ2) − αp

π
log λ − αq

π
log µ

)
(64)

It has the extremum (minimum) with respect to λ,µ (κ2 being fixed) at 2

r0 + r2 = αp, r0 + r3 = αq . (65)

2 In details, λ
∂g

∂λ
= r0+r2

π
, µ

∂g

∂µ
= r0+r3

π
, κ2 ∂g

∂κ2 = r0
π

.
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The extremum value of g(λ,µ; κ2) − αp

π
log λ − αq

π
log µ is

g(αp, αq ; κ2) = r0

π
log κ2 +

3∑

j=0

(r j ) (66)

where the numbers r j are to be calculated via

r0 = π − a1 + a2 + a3

2
, r1 = a2 + a3 − a1

2
,

r2 = a3 + a1 − a2

2
, r3 = a1 + a2 − a3

2
,

(67)

and

a2 = π − αp , a3 = π − αq ,

a1 = arccos

(
cos a2 cos a3 + κ2 − 1

κ2 + 1
sin a2 sin a3

)
.

(68)

The last equality is the solution of κ2 = sin r0 sin r1
sin r2 sin r3

with respect to a1. Therefore
asymptotically

FP,Q = (−)P+Q+P Q · f0 ·
(

1 + F ′

N M
+ · · ·

)
· eN Mg(αp,αq ;κ2). (69)

Function g(αq , αq ; κ2) has the maximum near αp = αq = π − a, where a is
defined by (28), and

g(αp, αq ; κ2) = g0(κ2) − 1 + c2

4πc

(
δα2

p + δα2
q

) − 1 − c2

2πc
δαpδαq , (70)

where g0(κ2) is given by (32). Let further even integers P0, Q0 and real numbers
u1, u2 are defined by (29). Then

δαp = π

M
(p + u1) , δαq = π

N
(q + u2). (71)

Therefore, the leading term of (69) is

FP0+p,Q0+q = (−)p+q+pq · f0 · eN Mg0(κ2)−�(p+u1,q+u2), (72)

where the quadratic form is given by (30).
The next order in (69), F ′ = f1 + f2�(p + u1, q + u2), is the result of nu-

merical tests.
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APPENDIX C. THETA-FUNCTIONS

In the limit M, N → ∞ the polynomial F(X, Y ) as well as the eigenstates of
tα,β (x, y) for periodical distribution of the signs εm,n become the theta-functions.
In particular, eqs. (34) may be re-written in a theta-functions-like form:

(∑
x2m y2nτ2m,2n

)2

−
(∑

(−)n x2m+1 y2nτ2m+1,2n

)2

−
(∑

(−)m x2m y2n+1τ2m,2n+1

)2

−
(∑

(−)n+m x2m+1 y2n+1τ2m+1,2n+1

)2

=
∑

p,q

(−)p+q+pqe−�(p+u1,q+u2)x2p y2q (73)

Let us re-define x = eiπ z1 and y = eiπ z2 . Then the theta-function-like seria

τα,β (z1, z2) =
∑

m,n∈Z

(−)αn+βmτ2m+α,2n+βeiπ(2m+α)z1+iπ (2n + β)nz2. (74)

stand for the transfer matrices.
It is helpful to discuss some properties of theta-functions. Let

�(β)
u1,u2

(z1, z2) =
∑

p,q

e−β�(p+u1,q+u2)+2π ipz1+2π iqz2 (75)

for our particular quadratic form � (30). It has the general Jacobi transform
property:

�(β)
u1,u2

(z1, z2) = 2

β
e−2π i(z1u1+z2u2) �

(4/β)
z2,−z1

(−u2, u1). (76)

The other θ -function, related to F , is

Fu1,u2 (z1, z2) =
∑

p,q

(−)p+q+pqe−�(p+u1,q+u2)+2π iz1 p+2π iz2q . (77)

One can easily see,

Fu1,u2

(
z1, z2) = 1

2

(
�(1)

u1,u2

(
z1 + 1

2
, z2 + 1

2

)

+�(1)
u1,u2

(
z1 + 1

2
, z2

)
+ �(1)

u1,u2

(
z1, z2 + 1

2

)
− �(1)

u1,u2
(z1, z2)

)

=
(

2�
(4)
u1/2,u2/2(2z1, 2z2) − �(1)

u1,u2
(z1, z2)

)
. (78)
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For the case u1 = u2 = 0, the polynomial identity F2N ,2M (x2, y2) =
FN ,M (x, y)FN ,M (−x, y)FN ,M (x,−y)FN ,M (−x,−y) provides

f0 F0,0(z1, z2) = f 4
0 F0,0

(
z1

2
,

z2

2

)
F0,0

(
z1 + 1

2
,

z2

2

)

×F0,0

(
z1

2
,

z2 + 1

2

)
F0,0

(
z1 + 1

2
,

z2 + 1

2

)
. (79)

The limit z1, z2 → 0 gives f0 for (31):

f0 = 3

√
4

F0,0
(

1
2 , 0

)
F0,0

(
0, 1

2

)
F0,0

(
1
2 , 1

2

) . (80)

As well, the value of χ for (47) follows from
∑

m,n

(−)m+n+mne−β�(m,n) = F (β)
0,0 (0, 0)

= 1

β
�

(1/β)
0,0 − �

(β)
0,0 ≈ (1 − β)χ (81)

at β → 1 with χ = �
(1)
0,0 + 2

∂�
(β)
0,0

∂β
|β=1.

APPENDIX D. EXAMPLES OF PERIODICAL DISTRIBUTION

Here we give an example is a periodical distribution of the signs. Let

ε2m+α,2n+β = εα,β eiπ(um+vn) (82)

with u, v = 0 or 1. Periodicity of εm,n provides the periodicity of the series
expansions (42), and therefore

c2m+α,2n+β = ε2m+α,2n+β cα,β . (83)

Equation (37) gives

c2
α,β�

(4β)
0,0 − c2

1−α,βeiπu�
(4β)
1
2 ,0

− c2
α,1−βeiπv�

(4β)

0, 1
2

−c2
1−α,1−βeiπ(u+v)�

(4β)
1
2 , 1

2

= 1 (84)

for all four choices of (α, β), its solution is c2
0,0 = c2

1,0 = c2
0,1 = c2

1,1 (it follows
from the careful analysis of the structure of εm,n-products in (42)), so that

c2m+α,2n+β = εα,β eiπ(um+vn)

×
(
�

(4β)
0,0 − eiπu�

(4β)
1
2 ,0

− eiπv�
(4β)

0, 1
2

− eiπ(u+v)�
(4β)
1
2 , 1

2

)−1/2
. (85)



Thermodynamic Limit for a Spin Lattice 1249

APPENDIX E. TRANSFER MATRIX OF

ZAMOLODCHIKOV—BAZHANOV—BAXTER MODEL

In the last section we would like to describe the relation between (22) and
Baxter’s free energy for Zamolodchikov’s model. We will refer to, (13) where the
inhomogeneous model was considered and divisor parameterization was used.
Equations (231) in Ref. 13 look like

J (X ) · T = T · J (X ′) = 0. (86)

Here J (X ) and J (X ′) are generating functions (10), operator T is a modified
transfer matrix for Zamolodchikov-Bazhanov-Baxter model (in general, the Pauli
matrices may be replaced by the Weyl algebra generators at root of unity). It
follows from (86), T up to a normalization is the product of algebraic supplements
of J (X ) and J (X ′).

In our particular case, J (X ), J (X ′) and T after the quasi-diagonalization are
2 × 2 matrices (in the basis of the Pauli matrices). Transfer-matrix of Zamolod-
chikov’s model T (θ1, θ2, θ3), mentioned in the Introduction, is the trace of T:

T = Trace2×2T. (87)

Generating functions J (X ) and J (X ′) stand for J (λ(X )N/2, µ(X )M/2; κ2) and
J (λ(X ′)N/2, µ(X ′)M/2; κ2) in the present notations, where

κ2 = tan2 θ1

2
= sin β2 sin β3

sin β0 sin β1
(88)

is the κ-parameter in both J (X ) and J (X ′), and explicit evaluations for λ and µ

from(13) to the terms of linear excesses β j give

λ(X ) = e−i(β1+β2) sin β0

sin β3
, µ(X ) = ei(β0+β2) sin β1

sin β3
, (89)

and

λ(X ′) = ei(β0+β3) sin β1

sin β2
, µ(X ′) = e−i(β1+β3) sin β0

sin β2
. (90)

It gives us the identification {r j } = {a permutation of β j } and relates (22) to
Baxter’s answer for the partition function per site k:

log k = normalization +
3∑

j=0

(
β j

2π
log 2 sin β j + (β j )

)
. (91)

The reader may see the discrepancy, β j

2π
log 2 sin β j in (91) and β j

π
log 2 sin β j

in (22), it means that the normalization is not trivial—it comes from a certain
variational principle.
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